【导读】华图上海军转干考试网发布:2013年上海军转干考试专家指导:最值问题解题思路(3),详细信息请阅读下文!如有疑问请加【2019上海军转干考试交流群:189274745】 ,更多资讯请关注上海华图微信公众号(shanghaiht),考试培训咨询电话:021-33621401
二、 反向构造
【例题4】某班45人参加一次数学比赛,结果有35人答对了第一题,有27人答对了第二题,有41人答对了第三题,有38人答对了第四题,则这个班四道题都对的至少有多少人?( )
A.5人 B.6人 C.7人 D.8人
特征:这种题型的特征体现在问题当中,“都满足某种情况的至少……”。
解析:解决这种问题的方法就是找到题目设问的反面情况,“四道题都对的至少”的反面就是“有错题的人最多”,那么我们先来找出每道题的错题数:第一道题的错题数有10道,第二道题的错题数有18道,第三道题的错题数有4道,第四道题的错题数有7道,因此我们可以得知,全班一共有39道错题,要想让有错题的人最多,那么最多只能39人错。由题干可知,全班一共有45人,如果有39个人有错题,那么说明没错题的人有6个,即6个人全对,因此答案选择B。
方法:对于这类题,我们先找到题干中问题的反面情况,然后对各种情况加总,最后再用总数减去反面的加和,就是我们要的答案。
三、 数列构造
【例题5】100人参加7项活动,已知每个人只参加一项活动,而且每项活动参加的人数都不一样,那么,参加人数第四多的活动最多有几个人参加?( )(2009年国考题)
A. 22 B. 21 C. 24 D. 23
特征:这类题型的特点体现在它的问题中,比如:“体重最轻的人最重是多少”、“得分最少的队伍最多得几分”、“参加比赛人数第四多的项目最多有几人参加”等等。
解析:对于这样的题目我们用的是数列的方式,将参与这七项活动的人数从多到少进行排序:①>②>③>④>⑤>⑥>⑦,题干要求的是“参加人数第四多的活动最多有几个人参加”,即④号,设参加④号的人数为x人,要满足x最多,就要其他六个项目的人数尽可能的少。首先让①、②、③尽可能的少,我们知道,这三项活动的人数都比④多,那么为了满足条件,我们让这三项活动的参加人数个都比④多一点点,这一点点如何确定呢?根据常识人数都是整数,那么①、②、③的人数分别x+3,x+2,x+1也就是分别比第四项多1、2、3个人。其次,我们来看⑤、⑥、⑦这三项活动的参加人数,要让x尽可能的多,那么⑤、⑥、⑦也要尽可能的少,这个时候区别出现了,⑤、⑥、⑦与①、②、③不同,①、②、③比x大,⑤、⑥、⑦比x小,那么对于⑤、⑥、⑦而言,多小是最小呢,不难想象参加这三项活动的人数分别是3、2、1个人。这样就可以列出方程:1+2+3+x+x+1+x+2+x+3=100,求出x=22,因此选择A。
(编辑:admin)