2012上海公务员考试指导:牛吃草问题在数学运算中的应用
2012-05-18 09:03 上海公务员考试网 http://sh.huatu.com/作者:上海华图 来源:未知牛吃草问题,是数量关系部分令很多考生头疼的问题。这类题看似很难,其实只要抓住了方法,就很容易解答。牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。
牛吃草问题的解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。
解决问题的核心公式:y=(N-x)×T,其中y=草量,N=牛的头数,x=草的生长速度,T=吃的天数。这个式子就是解决牛吃草问题的基础,下面我们结合例题教给大家怎么运用这一公式解答相关题:
1. 12头牛4周吃完6公顷的牧草,20头牛6周吃完12公顷的牧草。假设每公顷原有草量相等,草的生长速度不变。问多少头牛8周吃完16公顷的牧草?( )
A. 16 B. 20 C. 24 D. 25
解析:C 本题属于“牛吃草问题”。现在是三块面积不同的草地。6,12,16的最小公倍数是48。6×8=48,12×4=48,16×3=48。为了解决这个问题,只需将三块草地的面积统一起来。公顷数扩大,所需牛的头数也扩大。所以原题可变为:12×8=96头牛4周吃完48公顷的牧草,20×4=80头牛6周吃完48公顷的牧草。问多少头牛8周吃完48公顷的牧草?根据“牛吃草问题”的核心公式:y=(N-x)×T,设每周新长出x单位的草,牧场原有y单位的草,根据题意可得:y=(96-x)×4;y=(80-x)×6,解得:x=48,y=192。设N头牛8周吃完48公顷的牧草。则192=(3N-48)×8,得:3N=72,N=24。故24头牛8周吃完16公顷的牧草。故选C。
2. 牧场上有一片牧草,可以供27头牛吃6天,供23头牛吃9天,如果每天牧草生长的速度相同,那么这片牧草可以供21头牛吃几天?( )
A. 5 B. 6 C. 7 D. 8
解析:B 本题属于“牛吃草问题”。根据“牛吃草问题”的核心公式:y=(N-x)×T,设每天新长出x单位的草,牧场原有y单位的草,根据题意可得:y=(27-x)×6;y=(23-x)×9,解得:x=15,y=72。设这片牧草可以供21头牛吃T天,则72=(27-15)×T,得:T=6。故供21头牛吃6天。故选B。
多块草地的“牛吃草”问题,一般情况下找多块草地的最小公倍数,这样可以减少运算难度,但如果数据较大时,我们一般把面积统一为“1”相对简单些。
牛吃草问题还应用于工程问题,行程问题,流水问题等等。
3. 一个水池安装有排水量相等的排水管若干根,一根入水管不断地往池里防水,平均每分钟入水量相等,如果同时开放3根排水管,45分钟可以把池中水排完;同时,开放5根排水管25分钟把池中水排完,那么,同时开放8根排水管,几分钟排完池中的水?( )
A. 12 B. 14 C. 15 D. 18
解析:C 本题属于牛吃草问题。“进水管每分钟进水”相当于“草”,“ 排水管”相当于“牛”,根据“牛吃草问题”的核心公式:y=(N-x)×T,设池中原有水y单位,进水管每分钟进水x单位,可得:y=(3-x)×45,y=(5-x)×25,解得:x=0.5,y=112.5。设同时开放8根排水管,T分钟排完池中的水。则112.5=(8-0.5)×T,得:T=15。同时开放8根排水管,15分钟排完池中的水。故选C。
4. 自动扶梯以匀速由下往上行驶,两个性急的孩子嫌扶梯走得慢,于是在行驶的扶梯上,男孩每秒钟向上走1梯级,女孩每3秒钟走2梯级。结果男孩用50秒到达楼上,女孩用60秒到达楼上。该扶梯共有多少级?( )
A. 100 B. 120 C. 150 D. 180
解析:A 本题属于“牛吃草问题”。“总的草量”变成了“扶梯的梯级总数”,“草”变成了“梯级速度”,“牛”变成了“人的速度”。根据“女孩每3秒钟走2梯级”,得女孩每秒钟走3(2)梯级。根据“牛吃草问题”的核心公式:y=(N-x)×T,设扶梯的梯级总数为y,梯级速度为x。根据题意可得:y=(1+x)×50;y=(3(2)+x)×60,解得:x=1,y=100。则扶梯的梯级总数为100。故选A。
5. 有三辆不同车速的汽车同时从同一地点出发,沿同一公路追赶前面的一个骑车人。这三辆车分别用3分钟,5分钟,8分钟分别追上骑车人。已知快速车每小时54千米,中车速每小时39.6千米,那么慢车的车速是多少(假设骑车人的速度不变)?
A. 31 B. 31.5 C. 32 D. 32.5
解析:B 本题属于“牛吃草问题”。“总的草量”变成了“车与人最初的距离”,“草”变成了“人的速度”,“牛”变成了“车的速度”。根据“牛吃草问题”的核心公式:y=(N-x)×T,设车与人最初的距离为y,人的速度为x。根据题意可得:y=(54-x)×3;y=(39.6-x)×5,解得:x=18,y=108。设丙车的速度为N。则108=(N-18)×8,解得:N=31.5。故丙车的速度为31.5。故选B。
运用核心公式计算牛吃草问题,给考生带来很多方便,在熟悉公式的基础上,做下面几道练习题进行巩固。
1. 20匹马72天可吃完32公顷牧草,16匹马54天可吃完24公顷的草。假设每公顷牧草原有草量相等且每公顷草每天的生长速度相同。那么多少匹马36天可吃完40公顷的牧草?( )
A. 20 B. 25 C. 30 D. 35
2. 有一水井,继续不断涌出泉水,每分钟涌出的水量相等。如果使用3架抽水机来抽水,36分钟可以抽完,如果使用5架抽水机来抽水,20分钟可抽完。现在12分钟内要抽完井水,需要抽水机多少架?( )
A. 5 B. 6 C. 7 D. 8
3. 甲、乙、丙三辆车同时从a地出发,出发后6分钟甲车超过了一名长跑运动员,过了2分钟后乙车也超过去了,又过了2分钟丙车也超了过去。已知甲车每分钟走1000米,乙车每分钟走800米,求丙车的速度。( )
A. 560 B. 620 C. 680 D. 700
4. 牧场长满牧草,每天牧草匀速生长,这片牧场可供10头牛吃20天,可供15头牛吃10天。问可供25头牛吃几天?( )
A. 4 B.6 C. 8 D. 5
更多内容请继续关注: 上海公务员考试网 公务员考试 公务员考试网 公务员考试培训课程
2013年上海事业单位考试最新招聘公告 | 事业单位真题汇总 | 事业单位培训 |
2013年上海招警学员考试公告及大纲 | 招警考试历年录取线 | 招警考试培训 |
2014年上海公务员考试材料及真题汇总 | 公务员考试备考资料 | 公务员培训课 |